RNA-seq: filtering, quality control and visualisation

COMBINE RNA-seq Workshop
QC and visualisation (part 1)
RNA-seq of Mouse mammary gland

Fu et al. (2015) ‘EGF-mediated induction of Mcl-1 at the switch to lactation is essential for alveolar cell survival’ Nat Cell Biol
(some) questions we can ask

• Which genes are differentially expressed between basal and luminal cells?
• ... between basal and luminal in virgin mice?
• ... between pregnant and lactating mice?
• ... between pregnant and lactating mice in basal cells?
• Reading in the data
 – counts data and sample information
• Formatting the data
 – clean it up so we can look at it easily
Filtering out lowly expressed genes

- Genes with very low counts in all samples provide little evidence for differential expression
- Often samples have many genes with zero or very low counts
Filtering out lowly expressed genes

• Testing for differential expression for many genes simultaneously adds to the multiple testing burden, reducing the power to detect DE genes.

• IT IS VERY IMPORTANT to filter out genes that have all zero counts or very low counts.

• We filter using CPM values rather than counts because they account for differences in sequencing depth between samples.
Filtering out lowly expressed genes

- **CPM = counts per million**, or how many counts would I get for a gene if the sample had a library size of 1M.

For a given gene:

<table>
<thead>
<tr>
<th>Library size</th>
<th>Count</th>
<th>CPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10M</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>20M</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Filtering out lowly expressed genes

- Use a CPM threshold to define “expressed” and “unexpressed”
- As a general rule, *a good threshold can be chosen for a CPM value that corresponds to a count of 10.*
- In our dataset, the samples have library sizes of 20 to 20 something million.

<table>
<thead>
<tr>
<th>Library size</th>
<th>Count</th>
<th>CPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10M</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>20M</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Filtering out lowly expressed genes

- Use a CPM threshold to define “expressed” and “unexpressed”
- As a general rule, a good threshold can be chosen for a CPM value that corresponds to a count of 10.

In our dataset, the samples have library sizes of 20 to 20 something million.

<table>
<thead>
<tr>
<th>Library size</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>1</td>
</tr>
<tr>
<td>10M</td>
<td>10</td>
</tr>
<tr>
<td>20M</td>
<td>10</td>
</tr>
</tbody>
</table>

We use a CPM threshold of 0.5!
Filtering out lowly expressed genes

- Use a CPM threshold to define “expressed” and “unexpressed”
- As a general rule, a good threshold can be chosen for a CPM value that corresponds to a count of 1
- In our dataset, the samples have library sizes of 20 to 20 something million.

<table>
<thead>
<tr>
<th>Library size</th>
<th>Count</th>
<th>CPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10M</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20M</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Filtering out lowly expressed genes

- We keep any gene that is (roughly) expressed in at least one group.
- 12 samples, 6 groups, 2 replicates in each group.
Filtering out lowly expressed genes

• We keep any gene that is (roughly) expressed in at least one group.
• 12 samples, 6 groups, 2 replicates in each group.

Basal cells
- Virgin expressed
- Pregnant expressed
- Lactating expressed

Luminal cells
- Virgin unexpressed
- Pregnant unexpressed
- Lactating unexpressed
Filtering out lowly expressed genes

- We keep any gene that is (roughly) expressed in at least one group.
- 12 samples, 6 groups, 2 replicates in each group.

- **Basal cells**
 - Virgin unexpressed
 - Pregnant expressed
 - Lactating unexpressed

- **Luminal cells**
 - Virgin unexpressed
 - Pregnant unexpressed
 - Lactating unexpressed
Filtering out lowly expressed genes

- We keep any gene that is (roughly) **expressed** in at least **one group**.
- **12 samples, 6 groups, 2 replicates in each group.**

Keep gene if **CPM > 0.5** in at least **2 or more samples**

Basal cells
- Virgin **unexpressed**
- Pregnant **expressed**
- Lactating **unexpressed**

Luminal cells
- Virgin **unexpressed**
- Pregnant **unexpressed**
- Lactating **unexpressed**
QC and visualisation (part 2)
MDS Plots

• A visualisation of a principle components analysis which looks at where the greatest sources of variation in the data come from.

• **Distances** represents the typical log2-FC observed between each pair of samples
 – e.g. 6 units apart = 2^6 = 64-fold difference

• **Unsupervised** – separation based on data, no prior knowledge of experimental design.
 – Useful for an overview of the data. Do samples separate by experimental groups?
 – Quality control
 – Outliers?
QC and visualisation (part 3)
Normalisation for composition bias

A. Example: Unnormalised data

If we ran a DE analysis on Sample 1 and Sample 3, almost all genes will be down-regulated in Sample 1!!
Normalisation for composition bias

A. Example: Unnormalised data

B. Example: Normalised data
Normalisation for composition bias

• TMM normalisation (Robinson and Oshlack, 2010)
• How do we make the expression of all the genes go UP in the one sample?
 – Scaling factors
• E.g. scale library size by 0.1 so effective library size is 1M.

<table>
<thead>
<tr>
<th>Library size</th>
<th>Count</th>
<th>CPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1M</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

• Scaling factor <1 makes the CPM larger.
Voom
Variance of log-cpm depends on mean of log-cpm

- **SEQC (tech var only)**
- **Mouse (low bio var)**
- **Simulations (mod bio var)**
- **Nigerian (high bio var)**
- **D. melanogaster (systematically dif)**
Normal dist. assumes that the data is
• continuous
• has constant variance

RNA-seq data is
• discrete
• has non-constant mean-variance trend

Voom
✔
• Transform to log-counts per million
• Remove mean-var depenence through the use of precision weights
Variance weights

- Obtain variance estimates for each observation using mean-var trend.
- Assign inverse variance weights to each observation.
- Weights remove mean-variance trend from the data.