Differential Expression Analysis using limma

COMBINE RNA-seq Workshop

Many plotting options available...

Linear models for differential expression

limma package:

Linear Models for Microarrays \& RNA-seq

Analysis of differential expression studies

- arbitrarily complex experiments: linear models, contrasts
- empirical Bayes methods for differential expression: t-tests, F-tests, posterior odds
- analyse log-ratios, log-intensities, log-CPM values
- accommodate quality weights in analysis
- control of FDR across genes and contrasts
- many plotting functions to help visualize raw data and final results from statistical analysis
- gene set testing at various levels
- fast, numerically efficient methods

RNA-seq of Mouse mammary gland

Fu et al. (2015) 'EGF-mediated induction of Mcl-1 at the switch to lactation is essential for alveolar cell survival' Nat Cell Biol

(some) questions we can ask

- Which genes are differentially expressed between basal and luminal cells?
- ... between basal and luminal in virgin mice?
- ... between pregnant and lactating mice?
- ... between pregnant and lactating mice in basal cells?

What do we need to perform a statistical test?

- Measure of average expression
- Measure of variability

One of the most useful statistics: \boldsymbol{t}-test

- We want to test the null hypothesis:

H0: mean(GroupA) = mean(GroupB)
against the alternative hypothesis:
H1: mean(GroupA) \neq mean(GroupB)

- An important assumption of the t-test is that the data is roughly normally distributed
- A statistician's best trick is to transform data that isn't normally distributed into something that looks more normally distributed

Log-counts vs counts for one gene

GeneID: 58175

GeneID: 58175

*A quick check to see how normal your data is: compare the mean and the median

We can perform t-tests on log-counts

- Take into account different sequencing depths
- Take into account normalisation factors
- Take into account we can't log a zero
- The cpm(y, log=TRUE) function does this for you

Now we have log-counts

- Calculate means and variances on the logcounts
$T=\log F C / S t d D e v / \sqrt{ } n$
- logFC is the difference in means between the two groups for the log-counts
- The t-statistic is t-distributed on n -1 degrees of freedom
- P-values!

RNA-seq data is more complicated

- Mean-variance relationship. Use voom

Although we test one gene at a time, we can share information about all the genes to help with testing

Before sharing

After sharing

Multiple testing burden

- Problem: We are performing tens of thousands of tests, which increases our chances of getting false discoveries
- Solution: Calculate false discovery rates ("adjusted p-values" in limma)
- Interpretation: If there are 100 genes significant at FDR<5\%, we are willing to accept that 5 will be false discoveries

Linear modelling analysis pipeline for RNA-seq data

- model.matrix / makeContrasts
- voom
- lmFit
- contrasts.fit
- treat
- eBayes
- topTable / topTreat
- decideTests

